Kernel Based High Order “Explicit” Unconditionally Stable Scheme for Nonlinear Degenerate Advection-Diffusion Equations
نویسندگان
چکیده
منابع مشابه
An explicit high order method for fractional advection diffusion equations
We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1 < α ≤ 2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We stu...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملNonlocal nonlinear advection-diffusion equations
We review some results about nonlocal advection-diffusion equations based on lower bounds for the fractional Laplacian. To Haim, with respect and admiration.
متن کاملHigh-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems
Several relaxation approximations to partial differential equations have been recently proposed. Examples include conservation laws, HamiltonJacobi equations, convection-diffusion problems, gas dynamics problems. The present paper focuses onto diffusive relaxation schemes for the numerical approximation of nonlinear parabolic equations. These schemes are based on a suitable semilinear hyperboli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2020
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-020-01152-w